GT3A Series - AnalogTimers

Key features of the GT3A series include:

- 4 selectable operation modes on each model
- External start, reset, and pause inputs
- Panel mount or socket mount
- Large variety of timing functions
- Power and output status indicating LEDs

Part Numbers

Mode Of Operation	Rated Voltage Code	Time Range	Output	Contact	Complete Part No.	
					8-Pin	11-Pin
A: ON-delay 1 B: Interval 1 C: Cycle 1 D: Cycle 3	AF20: 100 to 240V AC (50/60Hz)	0.1 seconds to 180 hours	250V AC, 3A, 30 V DC, 1A (resistive load)	Delayed SPDT	GT3A-1AF20	GT3A-1EAF20
	$\begin{aligned} & \text { AF20: } 100 \text { to } 240 \mathrm{~V} \text { AC }(50 / 60 \mathrm{~Hz}) \\ & \text { D12: } 12 \mathrm{~V} \text { DC } \\ & \text { AD24: } 24 \mathrm{~V} \text { AC }(50 / 60 \mathrm{~Hz}) / 24 \mathrm{~V} \text { DC } \end{aligned}$			Delayed SPDT + Instantaneous SPDT	GT3A-2AF20	GT3A-2EAF20
					GT3A-2D12	GT3A-2ED12
					GT3A-2AD24	GT3A-2EAD24
			240V AC, 5A, 24V DC, 5A (resistive load)	Delayed DPDT	GT3A-3AF20	GT3A-3EAF20
					GT3A-3D12	GT3A-3ED12
					GT3A-3AD24	GT3A-3EAD24

1. For wiring schematics and timing diagrams for GT3A-1, $-2,-3$, see pages 807 and 808 respectively.
2. For more details about time ranges, see instructions on page 812.
3. For socket and accessory part numbers, see page 838 .

GT3A-4, -5, -6

Mode of Operation	Rated Voltage Code	Time Range	Output	Contact	Input	Complete Part No.	
						A (11-pin)	B (11-pin)
A: ON-Delay 2 B: Cycle 2 C: Signal ON/OFF-Delay 1 D: Signal OFF-Delay 1	AF20: 100 to 240 V AC ($50 / 60 \mathrm{~Hz}$) D12: 12V DC AD24: 24V AC (50/60Hz)/24V DC	0.1 seconds to 180 hours	250V AC, 5A, 24 V D, 5A (resistive load)	Delayed DPDT	Start Reset Gate	GT3A-4AF20	GT3A-4EAF20
						GT3A-4D12	GT3A-4ED12
						GT3A-4AD24	GT3A-4EAD24
A: Interval 2 B: One-Shot Cycle C: Signal ON/OFF-Delay 2 D: Signal OFF-Delay 2	AF20: 100 to 240 V AC (50/60Hz) AD24: 24V AC (50/60Hz)/24V DC					GT3A-5AF20	GT3A-5EAF20
						GT3A-5AD24	GT3A-5EAD24
A: One-Shot B: One-Shot ON-Delay						GT3A-6AF20	GT3A-6EAF20
C: One-Shot 2 D: Signal ON/OFF-Delay 3						GT3A-6AD24	GT3A-6EAD24

4. For wiring schematics and timing diagrams GT3A-4,-5,-6, see pages 809,810 , and 811 respectively.
5. For more details about time ranges, see instructions on page 812.
6. $\mathrm{A}(11$-pin) and $\mathrm{B}(11$-pin) differ in the way inputs are wired.
7. For socket and accessory part numbers, see page 838.
8. For the timing diagrams overview, see page 794.

Timing Diagrams/Schematics

GT3A-1 Timing Diagrams

Delayed SPDT

Cycle 3 (ON first)

MODE
D

GT3A-2 Timing Diagrams
Delayed SPDT + Instantaneous SPDT

ON-Delay 1

Cycle 1
(OFF first)
MODE
C

GT3A-3 Timing Diagrams
Delayed DPDT

Operation Mode Selection

ON-Delay 1
MODE
A
\square

Interval 1
MODE
B

Item	Terminal Number			Operation	
Set Time				T	
Power	$\begin{aligned} & \hline 2-7(8 \mathrm{p}) \\ & 2-10(11 \mathrm{p}) \end{aligned}$			\rightarrow	
Delayed Contact	$\begin{aligned} & 1-4,5-8(8 p) \\ & 1-4,8-11(11 p) \end{aligned}$	(NC)			
	$\begin{array}{l\|} \hline 1-3,6-8(8 p) \\ 1-3,9-11(11 p) \\ \hline \end{array}$	(NO)			
Indicator	POWER			-	
	OUT				

Cycle 3 (ON first)

MODE
D

GT3A-4 Timing Diagrams

Delayed DPDT

Delayed DPDT

Interval 2

(A Type)

Operation
Mode Selection

Signal OFF-Delay 2
MODE
D

GT3A-6 Timing Diagrams

Delayed DPDT

$T=$ Set time $T a=$ Shorter than set time
$T=T^{\prime}+T^{\prime \prime}$

Step 1.	Desired Mode of Operation			ction	Remarks
Select the desired mode of operation.	For Timers	Mode of Operation	(1) Opera	Mode Selector	The desired operation mode can be selected from the $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D modes using the Operation Mode Selector. Change the operation mode from A to B, C, and D in turn by turning the operation mode selector clockwise using a flat screwdriver which is a maximum of $0.156^{\prime \prime}(4 \mathrm{~mm})$ wide. The selected mode is displayed in the window.
	GT3A-1 GT3A-2 GT3A-3	ON-delay 1		A	
		Interval 1		B	
		Cycle 1		C	
		Cycle 3		D	
	GT3A-4	ON -delay 2		A	
		Cycle 2		B	
		Signal ON/OFF-delay 1		C	
		Signal OFF-delay 1		D	
	GT3A-5	Interval 2		A	
		One-shot cycle		B	
		Signal ON/OFF-delay 2		C	
		Signal OFF-delay 2		D	
	GT3A-6	One-shot 1		A	
		One-shot ON-delay		B	
		One-shot 2		C	
		Signal ON/OFF-delay 3		D	
Step 2.	Desired Time Range		Selection		Remarks
Select the time range that contains the desired time period.		me Ranges	(2) Dial Selector	(3) Time Range Selector	The desired time range is selected by setting both (2) Dial Selector and (3) Time Range Selector.
	0.05 seconds	to 1 second	0-1	15	
	0.1 seconds	3 seconds	0-3		
	0.1 seconds	6 seconds	0-6		
	0.15 seconds	to 18 seconds	0-18		
	0.1 seconds	10 seconds	0-1	10 S	
	0.3 seconds	30 seconds	0-3		
	0.6 seconds	60 seconds	0-6		
	1.8 seconds	180 seconds	0-18		
	6 seconds to	0 minutes	0-1	10M	
	18 seconds to	30 minutes	0-3		
	36 seconds to	60 minutes	0-6		
	108 seconds	180 minutes	0-18		
	6 minutes to	0 hours	0-1	10H	
	18 minutes to	30 hours	0-3		
	36 minutes to 60 hours		0-6		
	108 minutes to 180 hours		0-18		
Step 3.			Selection		
Set the precise period of time desired by using the © 4 Setting Knob.					

GT3D - Digital Timers

Key features of the GT3D series include:

- Precise time setting using digital thumbwheel switches
- Elapsed or time remaining LCD display
- 6 time ranges, 16 timing functions
- Time delays up to 99.9 hours

UL Recognized File No. E55996

CSA Certified File No. LR58183 File No. LR96764
 File No. LR83814

Cert. No. BL9801133323911 (LVD)

Specifications

		GT3D-2	GT3D-3	GT3D-4	GT3D-8
Operation System		Solid state CMOS circuitry			
Operation		Multi-mode			Multi-mode one-shot output
Time Range		0.01 s to 99.9 hours			
Rated Voltage		100 to 240 V AC ($50 / 60 \mathrm{~Hz}$), 24V AC ($50 / 60 \mathrm{~Hz}$)/24V DC			
Contact Ratings		125 V AC/250V AC, 3A; 30V DC/1A (resistive load)	125V AC/250V AC, 5A; 30V DC/5A (resistive load)		
Contact Form		Delayed SPDT + instantaneous SPDT	Delayed DPDT	Delayed DPDT	Delayed DPDT
Minimum Applicable Load		$5 \mathrm{~V}, 10 \mathrm{~mA}$ (reference value)			
Voltage Tolerance		AF20 (100-240V AC): 85 to 264 V AC AD24 (AC): 20.4 to 26.4 V AC AD24 (DC): 21.6 to 26.4 V DC			
Error		$\pm 0.3 \% \pm 50 \mathrm{~ms}$ (voltage, repeat, and temperature)			
Setting Error		$\pm 0.5 \% \pm 50 \mathrm{~ms}$			
Reset Time		60 ms maximum			
Insulation Resistance		100M 2 minimum			
Dielectric Strength		Between power and output terminals: $2,000 \mathrm{~V}$ AC, 1 minute Between contacts of different poles: $2,000 \mathrm{~V} \mathrm{AC}, 1$ minute Between contacts of the same pole: 750 V AC, 1 minute			
Power Consumption (approximate)	AF20	11.8VA	11.6VA	3.7VA (100V AC, 60Hz) 11.6VA (200V AC, 60Hz)	
	AD24 AC/DC	1VA/0.8W	2.1VA/0.9W	2.1VA /0.9W	
Mechanical Life		10,000,000 operations minimum	5,000,000 operations minimum		
Electrical Life (at rated load)		50,000 operations minimum	100,000 operations minimum		
Outputs	Relay	250 V AC, 3A, 30V DC, 1A (resistive load)		40V AC/, 24V DC (resistive load)	
Vibration Resistance		100 N (approximate 10G)			
Shock Resistance		Operating extremes: 100 N (approximate 10G) Damage limits: 500N (approximate 50G)			
Operating Temperature		-10 to $+50^{\circ} \mathrm{C}$			
Storage Temperature		-30 to $+80^{\circ} \mathrm{C}$			
Operating Humidity		45 to 85% RH			
Weight (approximate)		70 g	75 g	76 g	
Housing Color		Gray			

Part Number List

Mode of Operation	Time Range	Output	Contact	Rated Voltage Code	Complete Part No.	
					8-Pin	11-Pin
1-A: ON-delay 1 1-B: Interval 1 first 1-C: Cycle 1 (OFF first) 1-D: Cycle 3 (ON first)	$\begin{aligned} & 0.01 \text { s to } \\ & 99.9 \text { hours } \end{aligned}$	250 V AC, 3A, 30 V DC, 1A (resistive load)	Delayed SPDT + instantaneous SPDT	100 to 240 V AC ($50 / 60 \mathrm{~Hz}$)	GT3D-2AF20	GT3D-2EAF20
				24 V AC/DC	GT3D-2AD24	-
		$\begin{aligned} & \text { 240V AC, } \\ & 24 \mathrm{~V} D C, 5 \mathrm{~A} \\ & \text { (resistive load) } \end{aligned}$	Delayed DPDT	100 to 240 V AC ($50 / 60 \mathrm{~Hz}$)	GT3D-3AF20	GT3D-3EAF20
				24V AC/DC	GT3D-3AD24	-

Part Numbers: GT3D-4

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Mode of Operation} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Time \\
Range
\end{tabular}} \& \multirow[b]{2}{*}{Output} \& \multirow[b]{2}{*}{Contact} \& \multirow[b]{2}{*}{Rated Voltage Code} \& \multicolumn{2}{|c|}{Complete Part No.} \\
\hline \& \& \& \& \& A (11-Pin) \& B (11-Pin) \\
\hline \begin{tabular}{l}
1-A: ON-delay 1 \\
1-B: Interval 1 first \\
1-C: Cycle 1 (OFF first) \\
1-D: Cycle 3 (ON first) \\
2-A: ON-delay 2 \\
2-B: Cycle 2 \\
2-C: Signal ON/OFF-delay 1 \\
2-D: Signal OFF-delay 1 \\
2-E: Interval 2 \\
2-F: One-shot cycle \\
3-A: Signal ON/OFF-delay 2 \\
3-B: Signal OFF-delay 2 \\
3-C: One-shot 1 \\
3-D: One-shot ON-delay \\
3-E: One-shot 2 \\
3-F: Signal ON/OFF-delay 3
\end{tabular} \& 0.01 s to 99.9 hours \& 240 V AC/24V DC, 5A (resistive load) \& Delayed DPDT \& 100 to 240 V AC (50/60Hz) \& GT3D-4AF20

GT3D-4AD24 \& GT3D-4EAF20

\hline
\end{tabular}

Part Numbers: GT3D-8

Mode of Operation	Time Range	Output	Contact	Rated Voltage Code	Complete Part No. (11-Pin)
1: ON-delay one-shot 1	0.01s to 2: Cycle one-shot 3: ON-delay one-shot 2	240V AC/24V DC, 5A (resistive load)	Delayed DPDT	100 to 240V AC (50/60Hz)	

1. For wiring schematics and timing diagrams GT3D, see pages 815 to 822 .
2. For more details about time ranges, see instructions on page 823.
3. $A(11$-pin) and $B(11$-pin) differ in the way inputs are wired.
4. For socket and accessory part numbers, see page 838 .
5. For timing diagrams overview, see page 794.

Timing Diagrams/Schematics
GT3D-2 Timing Diagrams
Delayed SPDT + Instantaneous SPDT

Cycle 3
(ON first)

GT3D-3 Timing Diagrams

Delayed DPDT

GT3D-4 Timing Diagrams

These timers require a start input. A gate and reset input are optional. Inputs are controlled by external pushbuttons. Reset occurs when the power is removed or when the reset input is supplied. The gate signal can be used to interrupt (freeze) timer functions. Timer functions resume when the gate input is removed. B style timers are not equipped for gate input.

Delayed DPDT

ON-Delay 1
Time Remaining
$1-\mathrm{A}$

Time Elapsed
$1-A$

Interval 1

Time Remaining
$1-B$

Time Elapsed
$1-B$

Item	Terminal Number					Operation
Power	2-10					
Delayed	(NC)	$\begin{gathered} 1-4 \\ 8-11 \end{gathered}$	8-11			
Contact	(NO)	$\begin{gathered} \hline 1-3 \\ 9-11 \end{gathered}$	9-11			
Indicator	OUT					
gital Time	DOWN					
Display	UP					
Set Time					T (

GT3D-4 Timing Diagrams

GT3D-4 Timing Diagrams

Cycle 2

Time Remaining

Time Elapsed

Signal ON/OFF-Delay 1
Time Remaining
$2-\mathrm{C}$
Time Elapsed
$2-C$

Singal OFF-Delay 1
Time Remaining
$2-D$
Time Elapsed
$2-D$

GT3D-4 Timing Diagrams

GT3D-4 Timing Diagrams

One-Shot ON-Delay
Time Remaining
$3-D$
Time Elapsed
$3-D$

GT3D-8 Timing Diagrams

Delayed DPDT

Operation

 Mode Selection

ON-Delay One-Shot 1

Time Remaining	$\mathbf{1}$
Time Elapsed	$\mathbf{1}$

Cycle One-Shot

Instructions: Setting GT3D-2, GT3D-3 Timers

Step 1	Desired Mode/Selection				Remarks
Select the desired time display and operation modes.	Time Display Mode	(1) Indicator Mode Selector	Operation Mode	(2) Operation Mode Selector	1. Use the flat screwdriver to set the selectors. Since selectors do not turn all the way around, both clockwise and counterclockwise rotation may be necessary.
	Time elapsed	1	ON-delay 1	A	
	Time remaining	1			
	Time elapsed	1	Interval		2. The (1) Indicator Mode Selector determines whether the Digital Time Display shows the time elapsed or time remaining. The (2) Operation Mode Selector determines the desired operation mode. Decide which display and mode is desired, then use these two selectors (1) (2) to set the operation mode.
	Time remaining	1			
	Time elapsed	1	Cycle 1	${ }^{\text {C }}$ C	
	Time remaining	1			3. The (1) Operation Mode Selector has two blank modes which are not intended for use. Always have this selector set to A, B, C, or D.
	Time elapsed	1	Cycle 3	D	
	Time remaining	1			
Step 2	Desired Operation		Selection		Remarks
Select a time range that contains the desired period of time.	Base Time Ranges		(3) Time Range Selector		1. The (3) Time Range Selector controls both the decimal point indicator (9.99, 99.9, 999) and the time increment indicators S (seconds), M (minutes), and H (hours).
			Decimal Point Indicator	Time Increment Indicator	
	0.01 second	to 9.99 seconds	9.99	S	
	0.1 second	o 99.9 seconds	99.9		2. Chose which base time range contains the targeted timer setting. Then use the (3) Time Range Selector to set the decimal point indicator and time increment indicator to its corresponding pair of settings.
	1 second	999 seconds	999		
	0.1 minute	o 99.9 minutes	99.9	M	3. Since these configurations offer a complete range of settings from 0.01 seconds to 99.9 hours, the setting of 9.99 for minutes and the 9.99 and 999 settings for hours are not listed and should not be used.
	1 minute	999 minutes	999		
	0.1 hour	o 99.9 hours	99.9	H	
Step 3	Desired Operation		Selection		Remarks
Set the precise period of time desired by using the (4) Time Setting Digital Switch.					Use the (4) Time Setting Digital Switch to set the desired period of time. It is important to remember that the setting of the (3) Time Range Selector determines the units of time measurement as well as the implied decimal point location.

It is important to remember that the (3) Time Range Selector not only selects the time range but also influences the interpretation of the Digital Time Display.
Changing the (3) Time Range Selector setting changes the units of time measurement (seconds, minutes, hours) as well as the decimal point location.

Instructions: Setting GT3D-4 Timers

Step 1	Desired Mode/Selection				Remarks
Select the desired time display and operation modes.	Time Display Mode	(1) Indicator Mode Selector	Operation Mode	(2) Operation Mode Selector	1. Use a flat screwdriver to set the selectors. Since selectors do not turn all the way around, both clockwise and counterclockwise rotation is necessary.
	Time elapsed Time remaining	1	ON-delay 1 Interval 1 Cycle 1 D: Cycle 3	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { D } \end{aligned}$	
	Time elapsed Time remaining	2 2	ON -delay 2 Cycle 2 Signal ON/OFF-delay 2 Signal OFF-delay 1 Interval 2 One-shot cycle	$\begin{aligned} & A \\ & B \\ & C \\ & C \\ & D \\ & E \\ & F \end{aligned}$	2. The (1) Indicator Mode Selector determines whether the Digital Time Display shows the time elapsed or time remaining. The (2) Operation Mode Selector determines the desired operation mode. Decide which display and mode is desired; then use these two selectors(1) (2) to set the operation mode. 3. When using the indicator mode setting " 1, " the (2) Operation Mode Selector has two blank modes which are not intended for use. When using mode setting " 1 ," always have the operation mode selector set to $\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D .
	Time elapsed Time remaining	3 3	Signal ON/OFF-delay 2 Signal OFF-delay 2 One-shot 1 One-shot ON-delay One-shot 2 Signal ON/OFF-delay 3	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	
Step 2	Desired Operation		Selection		Remarks
Select a time range that contains the desired period of time.	Base Time Ranges		(3) Time Range Selector		1. The (3) Time Range Selector controls both the decimal point indicator (9.99, $99.9,999$) and the time increment indicators S (seconds), M (minutes), and H (hours).
			Decimal Point Indicator	Time Increment Indicator	
	0.01 seconds to 9.99 seconds		9.99	S	2. Chose which base time range contains the targeted timer setting. Then use the (3) Time Range Selector to set the decimal point indicator and time increment indicator to its corresponding pair of settings.
	0.1 seconds to 99.9 seconds		99.9		
	1 second to 999 seconds		999		
	0.1 minutes to 99.9 minutes		99.9	M	3. Since these configurations offer a complete range of settings from 0.01 seconds to 99.9 hours, the setting of 9.99 for minutes and the 9.99 and 999 settings for hours are not listed and should not be used.
	1 minute to 999 minutes		999		
	0.1 hours to 99.9 hours		99.9	H	
Step 3	Desired Operation		Selection		Remarks
Set the precise period of time desired by using the (4) Time Setting Digital Switch.					Use the (4) Time Setting Digital Switch to set the desired period of time. It is important to remember that the setting of the (3) Time Range Selector determines the units of time measurement as well as the implied decimal point location.

[^0]
Instructions: Setting GT3D-8Timers

Step 1	Desired Mode of Operation		Selection		Remarks
Select the time display and operation modes.	Operation Mode	Time Display Mode	(1) Indicator Mode Selector		1. Use a flat screwdriver to set the selectors. Since selectors do not turn all the way around, both clockwise and counterclockwise rotation is necessary. 2. The GT3D-8 (1) Indicator Mode Selector selects both whether the Digital Time Display displays the time elapsed or time remaining and also the mode of operation. Decide which display and mode is desired. Then use this selector to set the operation mode.
	ON-Delay One-Shot	Time elapsed		1	
		Time remaining	1		
	Cycle One-Shot	Time elapsed	2		
		Time remaining	2		
	ON-Delay One-Shot 2	Time elapsed	3		
		Time remaining	3		
Step 2	Desired Mode of Operation		(2) Single-Shot Output Time Selector		Remarks
Select the single shot output time.	Desired Single-Shot Output Time				On the GT3D-8 timers, the desired single-shot output time can be selected from the A, B, C, D, E, and F modes using the (2) One-Shot Output Time Selector.
	0.1 se	conds		A	
	0.5 se	conds		B	
	1 se	cond		C	
	5 sec	onds		D	
	10 se	conds		E	
	50 se	conds		F	
Step 3	Desired	peration	Sele	ction	Remarks
			(3) Time Ran	ge Selector	
	Base Tim	e Ranges	Decimal Point Indicator	Time Increment Indicator	1. The (3) Time Range Selector controls both the decimal point indicator (9.99, 99.9, 999) and the time increment indicators S (seconds),
	0.01 seconds to 9.99 se	conds	9.99		M (minutes), and H (hours). 2. Chose which base time range contains the targeted timer setting.
that contains the	0.1 seconds to 99.9 sec	onds	99.9	S	Then use the (3) Time Range Selector to set the decimal point indica-
desired period of time.	1 second to 999 second		999		tor and time increment indicator to its corresponding pair of settings. ${ }^{\text {3. Since these configurations offer a complete range of settings }}$.
	0.1 minutes to 99.9 min	utes	99.9		from 0.01 seconds to 99.9 hours, the setting of 9.99 for minutes and
	1 minute to 999 minute		999		the 9.99 and 999 settings for hours are not listed and should not be
	0.1 hours to 99.9 hours		99.9	H	
Step 4	Desired	peration	Sele	ction	Remarks
Set the precise period of	time desired by using th	e (4) Time Setting Digita	Switch.		Use the (4) Time Setting Digital Switch to set the desired period of time. It is important to remember that the setting of the (3) Time Range Selector determines the units of time measurement as well as the implied decimal point location.

GT3F Series - True OFF Delay Timers

Key features of the GT3F series include:

- "True" power OFF-delay up to 10 minutes
- No external control switch necessary
- Available with reset inputs
- Mountable in sockets or flush panel

1. An inrush current flows during the minimum power application time. AF20: approximate 0.4 A , AD24: approximate 1.2A
2. GT3F does not read the preset time range shown on the knob after power is turned off. Note that minimizing the preset time, by turning the knob to zero, does not shorten the delay time after power is removed.

Part Numbering List

Mode of	Rated	Time Pange	Output	Contact	Optional Input	Comple	Number
Operation	Voltage Code	Time Range	Output	Contact	Optional input	8 -Pin	11-Pin
Power OFF-delay	AF20: 100 to 240VAC ($50 / 60 \mathrm{~Hz}$)	0.1 seconds to 600 seconds	250 V AC, 5A,	Delayed SPDT	Reset	GT3F-1AF20	GT3F-1EAF20
			30V DC, 5A (resistive load)			GT3F-1AD24	GT3F-1EAD24
	AD24: 24V AC/DC		250 V AC, 3A,	Delayed DPDT	None (8p) Reset (11p)	GT3F-2AF20	GT3F-2EAF20
			30V DC, 3A (resistive load)			GT3F-2AD24	GT3F-2EAD24

Optional reset input resets the contact to the OFF state before time out.

Timing Diagrams/Schematics

GT3F-1 Timing Diagrams

T = Set time

$\mathrm{Ta}=$ Shorter than set time
Ts $=1$ Second
$\mathrm{Tr}=$ Minimum Power Application Time
GT3F-1: 1 Second

1. For time ranges, see page 829 .
2. For sockets and accessory part numbers, see page 838 .
3. When power is applied, the NO output contact closes. When power is removed, the timing period begins. When time has elapsed, the NO contact opens.
4. For the timing diagram overview, see page 794.

GT3F-2 Timing Diagrams

8-Pin Type

When power is applied, the NO contact closes. When power is removed, the timing period begins. When time has elapsed, the NO contact opens. Optional reset input will return contacts to original state before time elapses.
$T=$ Set time
$\mathrm{Ta}=$ Shorter than set time
Ts = 1 Second
$\mathrm{Tr}=$ Minimum Power Application Time
GT3F-1: 1 Second

Instructions: Setting GT3F Series Timers

Step 1	Desired Operation	Selection		Remarks
Select a time range that contains the desired period of time.	Base Time Ranges	(1) Dial Selector	(2) Time Range Selector	Time range can be selected from 1 S and 10 S using a flat screwdriver and five different dials of 0 to 1,0 to 3,0 to 6,0 to 18 , and 0 to 60 are displayed in the six windows by turning the Dial Selector, allowing for selecting the best suited scale. Note that the switch does not turn infinitely.
	0.1 s to 1s	0 to 1	1s	
	0.1 s to 3s	0 to 3		
	0.1 s to 6s	0 to 6		
	0.1 s to 10 s	0 to 1	10s	
	0.3 s to 30	0 to 3		
	0.6 s to 60	0 to 6		
	1.8s to 180s	0 to 18		
	6s to 600s	0 to 60		
Step 2				Remarks
The set time is selected by turning the (3) Setting Knob.				Setting Examples: 1. When the Setting Knob (3) is set at 2.5 , with Dial Selector (1) 0 to 3 and Time Range Selector (2) $1 S$ selected, then the set time is 2.5 seconds. 2. When the Setting Knob (3) is set at 5.0, with Dial Selector (1) 0 to 60 and Time Range Selector (2) 10S selected, then the set time is 500 seconds.

Instructions: Wiring Inputs

Inputs of GT3F

To avoid electric shock, do not touch the input signal terminal during power voltage application.
Never apply the input signals to two or more GT3F timers using the same contact or transistor.

In a transistor circuit for controlling input signals, with its primary and secondary power circuits isolated, do not ground the secondary circuit.

On the GT3F timers, connect the input signals to terminal No. 1 and 4 only on the 8 -pin type; connect the input signals to terminal No. 6 and 7 only on the 11-pin type. Never apply voltage to other terminals; otherwise, the internal circuit may be damaged.

Input signal lines must be made as short as possible and installed away from power cables and power lines. Use shielded wires or a separate conduit for input wiring.

The GT3F, consisting of a high-impedance circuit, may not be reset due to the influence of an inductive voltage or residual voltage caused by a leakage current. If not reset, connect an RC filter or bleeder resistor between power terminals so that the voltage between power terminals can be reduced to less than 15% of the rated voltage.

GT3S (Star-Delta)Timers

Star-Delta
 Delta Output Indicator Star Setting Knob

2 Star-Delta Switching Time Selector $0.05 \mathrm{sec}, 0.1 \mathrm{sec}$, $0.25 \mathrm{sec}, 0.5 \mathrm{sec}$

Time Ranges

\(\left.\begin{array}{|c|c|c|}\hline (1) Star Dial Selector \& (2) Star-Delta Switching

Time Selector\end{array}\right]\)| Time | |
| :---: | :---: |
| Dial | Time Range |

Contact Ratings

Contact Ratings		250V AC/30V DC, 5A (resistive load)
Life	Mechanical	$20,000,000$ operations minimum
	Electrical	100,000 operations minimum (rated load)

General Specifications

	Operation Sys		Solid state CMOS circuitry
	Operation Typ		Star-delta
	Time Range		Star side: 0.05 to 100 sec Star-delta switching time: $0.05,0.1,0.25,0.5 \mathrm{sec}$
	Rated Operati	Voltage	100 to 240V AC (50/60Hz)
	Operating Tem	ture	-10 to $+50^{\circ} \mathrm{C}$
	Storage Tem		-30 to $+80^{\circ} \mathrm{C}$
	Operating Hum		45 to 85\% RH
	Voltage Tolera		85 to 264V AC
	Repeat Error		$\pm 0.2 \%, \pm 10 \mathrm{msec}$
	Voltage Error		$\pm 0.2 \%, \pm 10 \mathrm{msec}$
	Temperature E		$\pm 0.2 \%, \pm 10 \mathrm{msec}$
	Setting Error		$\pm 10 \%$ maximum
	Reset Time		500 msec maximum
	Insulation Res		100M Ω minimum
	Dielectric Strength		Between power and output terminals: 2,000V AC, 1 minute Between contacts of different poles: 2,000V AC, 1 minute Between contacts of the same pole: 750 V AC, 1 minute
	Vibration Resistance		$100 \mathrm{~m} / \mathrm{sec}^{2}$ (Approx. 10G)
	Shock Resistance		Operating extremes: $100 \mathrm{~m} / \mathrm{sec}^{2}$ (Approx. 10G) Damage limits: 500m/sec² (Approx. 50G)
	Power Consumption (Approx.)	Type GT3S-1	2.3VA (100V AC, 60Hz), 4.0VA (200V AC, 60Hz)
		Type GT3S-2	2.3VA (100V AC, 60Hz), 3.8VA (200V AC, 60Hz)

Operation Charts

Product Series

GT3S-1
Star: Delayed SPST-NO
Delta: Delayed SPST-NO

GT3S-2
Star: Delayed SPST-NO
Delta: Delayed SPST-NO Instantaneous: SPST-NO

Internal Connection and Terminal Arrangement

Operation Chart

The star delayed contact goes on when power is turned on and goes off after a set time for the start contact (T_{1}). The delta delayed contact goes on after star-delta switching time $\left(T_{2}\right)$ and goes off when power is turned off. $\mathrm{T}_{1}=$ Star ON time (Set Time), $\mathrm{T}_{2}=$ Star-delta switching time, $\mathrm{T}_{3}=$ Delta ON time

The star delayed contact goes on when power is turned on and goes off after a set time for the star contact (T_{1}). The delta delayed contact goes on after star-delta switching time (T_{2}) and goes off when power is turned off. The instantaneous contact goes on when power is turned on and goes off when power is turned off. $\mathrm{T}_{1}=$ Star ON time (Set Time), $\mathrm{T}_{2}=$ Star-delta switching time, $\mathrm{T}_{3}=$ Delta ON time

GT3W Series - DualTime Range Timers

Key features of the GT3W series include:

- Sequential start, sequential interval, on-delay, recycler, and interval ON timing functions
- 2 time settings in one timer
- 8 selectable operation modes on each model
- Mountable in sockets or flush panel
- Power and output status indicating LEDs
- Time ranges up to 300 hours

General Specifications

Operation System				Solid state CMOS Circuit
Operation Type				Multi-Mode
Time Range				1: 0.1 sec to 6 hours, 3: 0.1 sec to 300 hours
Pollution Degree				2 (IE60664-1)
Over Voltage Category				III (IE60664-1)
Rated Operational Voltage			AF20	100-240V AC(50/60Hz)
			AD24	24 V AC(50/60Hz)/24V DC
			D12	12 V DC
Voltage Tolerance			AF20	85-264V AC($50 / 60 \mathrm{~Hz}$)
			AD24	20.4-26.4V AC(50/60Hz)/21.6-26.4V DC
			D12	10.8-13.2V DC
Disengaging Value of Input Voltage				Rated Voltage $\times 10 \%$ minimum
Range of Ambient Operating Temperature				-10 to $+50^{\circ} \mathrm{C}$ (without freezing)
Range of Ambient Storage and Transport Temperature				-30 to $+75^{\circ} \mathrm{C}$ (without freezing)
Range of Relative Humidity				35 to 85\%RH (without condensation)
Atmospheric Pressure				80kPa to 110kPa (Operating), 70kPa to 110kPa (Transport)
Reset Time				60 msec maximum
Repeat Error				$\pm 0.2 \%, \pm 10 \mathrm{msec} *$
Voltage Error				$\pm 0.2 \%$, $\pm 10 \mathrm{msec}{ }^{*}$
Temperature Error				$\pm 0.6 \%, \pm 10 \mathrm{msec} *$
Setting Error				$\pm 10 \%$ maximum
Insulation Resistance				$100 \mathrm{M} \Omega$ minimum (500V DC)
Dielectric Strength				Between power and output terminals: 2000V AC, 1 minute Between contacts of different poles: 2000 V AC, 1 minute Between contacts of the same pole:750V AC, 1 minute
Vibration Resistance				10 to 55 Hz amplitude $0.75 \mathrm{~mm}^{2}$ hours in each of 3 axes
Shock Resistance				Operating extremes: $98 \mathrm{~m} / \mathrm{sec}^{2}$ (approx. 10 G) Damage limits: 490m/sec² approx. 50G) 3 times in each of 3 axes
Degree of Protection				IP40 (enclosure), IP20 (socket) (IEC60529)
Power Consumption (Approx.)	AF20	100 V	A/60Hz	2.3VA
		200 V	A/60Hz	4.6VA
	AD24 (AC/DC)			1.8VA/0.9W
Mounting Position				Free
Dimensions				$40 \mathrm{Hx} 36 \mathrm{~W} \times 70 \mathrm{~mm}$
Weight (Approx.)				72 g

Contact Ratings

Allowable Contact Power		960VA/120W
Allowable Voltage		250 V AC/150V DC
Allowable Current		5A
Maximum permissible operating frequency		1800 cycles per hour
Rated Load		1/8HP, 240V AC
		3A, 240V AC (Resistive)
		5A, 120V AC/30V DC (Resistive)
Conditional Short Circuit		Fuse 5A, 250V
Life	Electrical	100,000 op. minimum (Resistive)
	Mechanical	20,000,000 op. minimum

Part Number List

Part Numbers

Mode of Operation	Output	Contact	Time Range*	Rated Voltage	Pin Configuration	New Part Numbers
A: Sequential Start B: On-delay with course and fine C: Recycler and instaneous D: Recycler outputs (OFF Start) E: Recycler outputs (ON Start) F: Interval ON G: Interval ON Delay H: Sequential Interval	$3 \mathrm{~A}, 240 \mathrm{~V}$ AC 5A, 120V AC/30V DC (Resistive Load)	Delayed SPDT Delayed SPDT	1: 0.1 sec - 6 hours *(See Time Range Settings for details.)	$\begin{gathered} 100 \text { to } 240 \mathrm{~V} \text { AC } \\ (50 / 60 \mathrm{~Hz}) \end{gathered}$	8 pin	GT3W-A11AF20N
					11 pin	GT3W-A11EAF20N
					8 pin	GT3W-A11AD24N
					11 pin	GT3W-A11EAD24N
					8 pin	GT3W-A11D12N
					11 pin	GT3W-A11ED12N
				$\begin{gathered} 100 \text { to } 240 \mathrm{~V} \text { AC } \\ (50 / 60 \mathrm{~Hz}) \end{gathered}$		GT3W-A33AF20N
				24 V AC/DC		GT3W-A33AD24N

1. For timing diagrams and schematics, see page 836 .
2. For socket and accessory part number information, see page 838.
3. 8 - and 11 -pin models differ only in the number of pins (extra pins are not used).
4. For the timing diagram overview, see page 794.
5. *For details on setting time ranges, see the instructions on page 837.

Time Range Table

Time Range Code: 1			Time Range Code: 3		
Time Range Selector	Scale	Time Range	Time Range Selector	Scale	Time Range
1 S		$0.1 \mathrm{sec}-1 \mathrm{sec}$	1 S		$0.1 \mathrm{sec}-3 \mathrm{sec}$
10S	0-1	$0.3 \mathrm{sec}-10 \mathrm{sec}$	1M	0-3	$3 \mathrm{sec}-3 \mathrm{~min}$
10M		$15 \mathrm{sec}-10 \mathrm{~min}$	1H		3 min - 3 hours
15		$0.1 \mathrm{sec}-6 \mathrm{sec}$	1 S		$0.6 \mathrm{sec}-30 \mathrm{sec}$
10 S		$1 \mathrm{sec}-60 \mathrm{sec}$	1M		$36 \mathrm{sec}-30 \mathrm{~min}$
1M	0-6	$6 \mathrm{sec}-6 \mathrm{~min}$	1H	0-30	36 min - 30 hours
10M		$1 \mathrm{~min}-60 \mathrm{~min}$			6 hours 300 hours
1 H		$6 \mathrm{~min}-6$ hours	10		hours - 300 hours

Timing Diagrams/Schematics

Instructions: Setting GT3WTimer

1. The switches should be securely turned using a flat screwdriver 4 mm wide (maximum). Note that incorrect setting may cause malfunction. The switches, which do not turn infinitely, should not be turned beyond their limits.
2. Since changing the setting during timer operation my cause malfunction, turn power off before changing.

Safety Precautions

Special expertise is required to use Electronic Timers.

- All Electronic Timer modules are manufactured under IDEC's rigorous quality control system, but users must add a backup or fail safe provision to the control system when using the Electronic Timer in applications where heavy damage or personal injury may occur should the Electronic Timer fail.
- Install the Electronic Timer according to instructions described in this catalog.
- Make sure that the operating conditions are as described in the specifications. If you are uncertain about the specifications, contact IDEC in advance.
- In these directions, safety precautions are categorized in order of importance to Warning and Caution.

Warning

Warning notices are used to emphasize that improper operation may cause sever personal injury or death.

- Turn power off to the Electronic timer before starting installation, removal, Wiring, maintenance, and inspection on the Electronic Timer.
- Failure to turn power off may cause electrical shocks or fire hazard.
- Emergency stop and interlocking circuits must be configured outside the Electronic timer. If such a circuit is configured inside the Electronic Timer, failure of the Electronic timer may cause malfunction of the control system, or an accident.

Caution

Caution notices are used where inattention might cause personal injury or damage to equipment.

- The Electronic Timer is designed for installation in equipment. Do not install the Electronic Timer outside equipment.
- Install the Electronic Timer in environments described in the specifications. If the Electronic Timer is used in places where it will be subjected to high-temperature, high-humidity, condensation, corrosive gases, excessive vibrations, or excessive shocks, then electrical shocks, fire hazard, or malfunction could result.
- Use an IEC60127-approved fuse and circuit breaker on the power and output line outside the Electronic Timer.
- Do not disassemble, repair, or modify the Electronic Timer.
- When disposing of the Electronic Timer, do so as industrial waste.

GT3 Series

Installation of Hold-Down Springs DIN Rail Mount Socket

Panel Mount Socket

Panel Mounting Accessories

Panel Mount Sockets and Hold-Down Springs

Panel Mount Socket				Applicable HD Springs	
Style	Appearance	Use with Timers	Part No.	Appearance	Part No.
8-Pin Solder Terminal		GT3A- (8-pin) GT3D- (8-pin) GT3W- (8-pin) GT3F- (8-pin) GT3S	SR2P-51		
11-Pin Solder Terminal		GT3A- (11-pin) GT3D- (11-pin) GT3W- (11-pin) GT3F- (11-pin)	SR3P-51		

For information on installing the hold-down springs, see page 838.

Flush Panel Mount Adapter and Sockets that use an Adapter

Instructions: Wiring Inputs for GT3 Series

Inputs Inputs

To avoid electric shock, do not touch the input signal terminal during power voltage application.
When connecting the input signal terminals of two or more GT3A timers to the same contact or transistor, the input terminals of the same number should be connected. (Connect Terminals No. 2 in common.)

Input signal lines must be made as short as possible and installed away from power cables and power lines. Use shielded wires or a separate conduit for input wiring.

Inputs Instructions, continued

For contact input, use gold-plated contacts to make sure that the residual voltage is less than 1 V when the contacts are closed.

For transistor input, use transistors with the following specifications; VCE $=40 \mathrm{~V}$, VCES $=1 \mathrm{~V}$ or less, IC $=50 \mathrm{~mA}$ or more, and ICBO $=50 \mu \mathrm{~A}$ or less. The resistance should be less than $1 \mathrm{k} \Omega$ when the transistor is on. When the output transistor switches on, a signal is input to the timer.

Inputs: GT3A-1, -2, -3

Transistor output equipment such as proximity switches and photoelectric switches can input signals if they are voltage/current output type, with power voltage ranges from 18 to 30 V and have 1 V . When the signal voltage switches from H to L , a signal is input to the timer

Inputs: GT3A-4, -5, -6

Start Input	The start input initiates a time-delay operation and controls output status.	No-voltage contact inputs and NPN open collector transis- tor inputs are applicable.
Reset Input	When the reset input is activated, the time is reset, and contacts return to original state.	24V DC, 1mA maximum
Gate Input	The time-delay operation is suspended while the gate input is on (pause).	Input response time: 50 msec maximum

Dimensions

Analog GT3 Timer, 8-Pin with SR2P-06

Digital GT3 Timer, 8-Pin with SR2P-06

Analog GT3 Timer, 11-Pin with SR3P-05

Analog GT3 Timer, 11-Pin with SR3P-06

Digital GT3 Timer, 11-Pin with SR3P-06

Digital GT3 Timer, 11-Pin with SR3P-05

Panel Mount Adapter

Analog GT3 Timer, 8-Pin and 11-Pin with SR6P-S08 or SR6P-S11

Digital GT3 Timer, 8-Pin and 11-Pin with SR6P-S08 or SR6P-S11

Mounting Hole Layout

Tolerance: +0.5 to 0

 N : No. of timers mounted

Analog and Digital GT3 Timer, 8-Pin with SR6P-M08G

General Instructions for AllTimer Series

Load Current

With inductive, capacitive, and incandescent lamp loads, inrush current more than 10 times the rated current may cause welded contacts and other undesired effects. The inrush current and steady-state current must be taken into consideration when specifying a timer.

Contact Protection

Switching an inductive load generates a counter-electromotive force (back EMF) in the coil. The back EMF will cause arcing, which may shorten the contact life and cause imperfect contact. Application of a protection circuit is recommended to safeguard the contacts.

Temperature and Humidity

Use the timer within the operating temperature and operating humidity ranges and prevent freezing or condensation. After the timer has been stored below its operating temperature, leave the timer at room temperature for a sufficient period of time to allow it to return to operating temperatures before use.

Environment

Avoid contact between the timer and sulfurous or ammonia gases, organic solvents (alcohol, benzine, thinner, etc.), strong alkaline substances, or strong acids. Do not use the timer in an environment where such substances are prevalent. Do not allow water to run or splash on the timer.

Vibration and Shock

Excessive vibration or shocks can cause the output contacts to bounce, the timer should be used only within the operating extremes for vibration and shock resistance. In applications with significant vibration or shock, use of hold down springs or clips is recommended to secure a timer to its socket.

Time Setting

The time range is calibrated at its maximum time scale; so it is desirable to use the timer at a setting as close to its maximum time scale as possible. For a more accurate time delay, adjust the control knob by measuring the operating time with a watch before application.

Input Contacts

Use mechanical contact switch or relay to supply power to the timer. When driving the timer with a solid-state output device (such as a two-wire proximity switch, photoelectric switch, or solid-state relay), malfunction may be caused by leakage current from the solid-state device. Since AC types comprise a capacitive load, the SSR dielectric strength should be two or more times the power voltage when switching the timer power using an SSR.

Generally, it is desirable to use mechanical contacts whenever possible to apply power to a timer or its signal inputs. When using solid state devices, be cautious of inrushes and back-EMF that may exceed the ratings on such devices. Some timers are specially designed so that signal inputs switch at a lower voltage than is used to power the timer (models designated as "B" type).

Timing Accuracy Formulas

Timing accuracies are calculated from the following formulas:
Repeat Error $\quad= \pm \frac{1 \times \text { Maximum Measured Value }- \text { Minimum Measured Value } \times 100 \%}{2 \text { Maximum Scale Value }}$
Voltage Error $\quad= \pm \frac{\mathrm{TV}-\operatorname{Tr} \times 100 \%}{\operatorname{Tr}}$

Tv: Average of measured values at voltage V
Tr: Average of measured values at the rated voltage
Temperature Error $\quad= \pm \frac{\mathrm{Tt}-\mathrm{T} 20 \times 100 \%}{\mathrm{~T} 20}$
Tt: Average of measured values at ${ }^{\circ} \mathrm{C}$
T20: Average of measured values at $20^{\circ} \mathrm{C}$
Setting Error $\quad= \pm \frac{\text { Average of Measured Values - Set Value } \times 100 \%}{\text { Maximum Scale Value }}$

[^0]: It is important to remember that the (3) Time Range Selector not only selects the time range but also influences the interpretation of the Digital Time Display. Changing the (3) Time Range Selector setting changes the units of time measurement (seconds, minutes, hours) as well as the decimal point location.

